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Qualitative properties of typical rotations of a heavy solid body are analized in
the case of the Goriachev-Chaplygin problemin which the first integrals of equa-~
tions of motion are independent, Gyration numbers of tangent vector fields on
two-dimensional invariant tori are determined, It is shown that the nutationof
a solid body is a quasi-periodic motion, and spin and precession have a princi-
pal motion, If the gyration number is irrational, then in the case of a solid body
the principal motion of node lines is zero,

In the case of the Goriachev-Chaplygin problem of motion of a heavy solid body with
a fixed point the principal moments of inertia satisfy the relation 4 == B = 4C andthe
center of mass lies in the equatorial piane of the ellipsoid of inertia, Initial conditions
are selected so that the constant of the area integral is zero, There exists then a parti~
cular supplementary integral, and this makes it possible to reduce the integration of the
equations of motion to quadratures [1],

A qualitative investigation of the motion of the Goriachev-Chaplygin top was initiated
by Sretenskii [2] who introduced in the equations of motion a small parameter related to
the fast gyrations of the body, and outlined the pattern of motion in the first approxima-
tion with respect to that parameter. These investigations were continued in {3}, An ana~
lysis of the special variables introduced by Chaplygin for integrating the equations of
motion is presented in [4], The qualitative pattern of body gyration in some degenerate
cases is investigated in [5].

Certain mathematical problems related to the analysis of the motion of a body in the
Goriachev-Chaplygin problem are considered below without any simplifying assumptions,

1, Dynamic systems originating on invariant tor{ of the Goria~-
chev=Chaplygin problem, For the symmetry of formulas we denote everywhere
the Euler-Poisson variables p, g, I, Yi» Vo and Ygby 2y, 24, . . ., 24 ,Iespectively.
In the Goriachev-Chaplygin problem the Euler-Poisson equations have four independent
integrals (1.1

Iy = 4 (2" + 2% + z3° — 2pa, [y = 25 (2 + 2,8 + payze

Iy = 4 (02 + 275) + 2376 (I3 =0), I = 2.2 + z® +ag

(I =1)
in which p = Pr/C, P is the body weight, r is the distance between the center of
mass and the suspension point, and C is the moment of inertia about the dynamic sym-
metry axis,

We denote by E (I3, I;) the common levels of the four integrals (1. 1) in the six~
dimensional space of the Euler-Poisson equations. Below we consider only such constants
of integrals I, and [, for which functions (1. 1) are independent at E (I, /,). Thecase
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in which I; = 0 is a specifically excluded. The remaining constants constitute a null
set, If the integrals (1, 1) are independent, £ is a smooth two-dimensional manifold,
A classical dynamic system obviously arises at E [6], Such systems can be investigated
by the method described in [7],

Each connected component of F is a two~dimensional torus [7]. The question arises
of the number of connected components of E. A partial answer is provided by the fol-
lowing lemma,

Lemma 1, If pissmall, £ is aunion of two tori,

Proof, First,we assume p = 0. Then the common levels of functions /, and 7,
represent in the three-dimensional space R?® {z;z,z4} two circles S;* (i = 1, 2) thatlie
in different planes ¥s = const. To each point {z,°z,°zs°} on &;! (i — 1,2) corresponds
a circle cut out in the Poisson sphere {z4? -} z,® -+ 22 —= 1} by the area integral

4{x"zs -+ 20’7} + 2T = 0
Since the position of that circle continuously depends on point {z,°r,°z,°}, the manifold
E consists of two connected components when p = 0 . If == 0 but is small, then, by
the Morse theorem the common levels are diffeomorphic to the level at p == 0 and,con-
sequently, have as many connectedness components [8].

Note, If we increase p ,then,by the same Morse theorem, the number of connected
components can change only then, when integrals (1. 1) become interdependent,

On each two-dimensional invariant torus T we can select angle variables ¢, and
¢, mod 2 in which the equations of motion are of the form

P = @, @ = 0 (1.2)

where o; (i = 1, 2) are constants independent on {, and /,. Equations (1. 2) specify
on T? a conditionally periodic motion at two frequencies @, and @,. To determine these
we introduce the variables sy and s, by formulas

Ty =8 + 8 4 (2 + 2°) = —515

Note that variables s; and —s, were introduced by Chaplygin for integrating the equa-
tions of motion [1], The Euler~Poisson variables can be expressed in terms of s, and s,
with the use of integrals (1. 1), In the new variables the equations of motion assumne the

form (cf, {1]) . VO &' = VO (sy) (1.3)
2(s1—sg) © % 2(s— )

(@ (2) = 4p’2* — (& — Lz — 415)%)

S

Equations (1. 3) are of the same form as in the Kowalewska problem [7], Hence the re-
sults obtained there are valid for these equations, The variables s, and Sy vary in the
intervals [a,b,] and la,b,], where the polynomial ® (z) > 0. If I; 5 0, the inter-
section [a,b,] [} lagbs] is empty. In the opposite case variables s; and s, may be the
same, and since §;55 < 0, 51 = S, = 0 on 7? for certain initial data. Consequently,
Xy = &y = x4 == () and J, == 0. A detailed qualitative analysis of the behavior of
variables s, and S; is given in [4, 7].

The numbers a; and b; (i == 1, 2) are simple roots of polynomial & (z), since other-
wise asymptotic motions would exist on the related invariant torus, which is impossible
because of the assumption of the independence of integrals (1. 1).
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We introduce angle variables \; and , mod 27 by formulas

i bi

= ds g d
‘Pl-—rag_ Yo | i T S —, s [ab] (=12 (L9

: i vew
In new variables Egs. (1. 3) assume the form
Y = T (=1, 2
SN TN A () E (1.5)

where s; (z) are real hyperelliptic functions of period 27t which are determined by
(1.4). The inverse substitution (y;, Py) — (@, @) reduces Eqs. (1. 5) to the form

7 .
[l Pi :%AT (i=1,2) (1. 6)

27

A= 71?(& sl(a;)dx—g 52 () d;r:) (A = 0)

These equations determine the conditionally periodic motion on I'* {¢1, ¢, mod 2x},
The ratio of frequencies (the gyration number) is y = T,/T; which evidently depends
on I, and I, , That function is not constant at least fof small values of parameter u.

2, The eigenrotation problem, Letus investigate the motion of the body
in terms of Euler angles &, ¢ and 1. Obviously z,, &,, . . ., Zg are conditionally
periodic functions of time, Since cos & == zz and 0 < ¥ < m, function & (¢) isalso
conditionally periodic,

Lemma 2, If at the initial instant of time [,p* <C 4[,% there exists an ¢ > 0

such that for all ¢ lag (1) | <1 — & (2.1

Proof. If | z¢ | =1, then xy= z, = r5=0, Integrals (1,1) yield the equalities z,% + z,% ==
I /4and |z | == | I/ p | (p = 0). Hence 2,2 = Iy /4 —1,*/n2 Consequently, if at some
instant of time the equality ! xg | =~ 1 is satisfied at £ ,then /,p* > 4 I,% Since set-f£ is
compact, inequality (2. 1) is valid under conditions of the lemma for some & > ¢,

Note. If I,p?> 4 1,2, the dynamic symmetry axis is vertical for some initial data
that satisfy this inequality,

We shall use the following terminology of celestial mechanics [9, 10]. The mean
motion of quantity § () is A = const, if for all £

E(t) = At +0(1)
If £(f) =AM + o(t) when t — oo, i.e.

() —M

lim =0

t—oo
the principal motion of the quantity & (£) is A.
Statement 1, If conditions of Lemma 2 are satisfied, the spinhas an average motion.
Proof, Since 1 — zg2 >¢ >0 for all ¢ hence
dv— 2 + %y

T Vi—=zg

is a two-frequency conditionally periodic function of time, By the Bohl theorem about
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the argument [11}
@ = (moy + nwp) t+ 1 (0
where m. and n are integers and f is a conditionally periodic function of ¢ Hence ¢=
A+ 0 (1),
If at some instant of time ¢ = t' the equality x4 = 1 is satisfied, then angle ¢ is
not formally determined, In such case we proceed as follows. We know that

Ty L2y mp(h— 32gd)

P = X3 — 4

T—z2 4l —zg)
Using the 1'Hospital rule for expanding the indeterminate form for I, = (), we obtain
. . I . .
lim @" = o7-, lh!lmocp(t) = lim o) = ¢
> - 110 4

It is reasonable to assume on the basis of the last equality that ¢ (') = ¢'. Function
@ (1) is then determinate and continuous for all ¢ & (—o0, 00},

This reasoning shows the expediency of analyzing spin even then, when the axis of sym-~
metry can assume a vertical position,

Theorem 1. Let Iy =0 and T,u? 5= 47,2, 1If for given constants of integrals
I, and J, frequencies oy and @, are commensurable, the spin has an average motion,
If ®yand @, are incommensurable, the spin has a principal motion that depends only on
I, and 1,.

Proof, Statement 1 implies that it is sufficient to consider the case when I,p? >
41, If the ratio ®,/w, is rational,then ¢ is a continuous periodic function of time
(at points where z42 = 1, function ¢ is assumed to be equal I,/2],). Hence in that
case ¢ = At + O (1).

Let us assume now that the ratio ®,/®, is irrational and consider on  T? {¢y,

@2 mod 2n} the circle S = {(q;, @) & T?: ¢; = @1 }. On S the variable
@, mod 25 is an angle variable. Let us determine on the direct product S* X [0,
27/ w,] the function

Fon ) =@ +o0 ot @)dr, mes, 1e0, -]
¢
where @ = @ (@, @3). Itisclear that f(@,) = F (¢, 2n/w;) defines the varia-
tion of angle @ during the time taken by a point on T moving along an irrational wind-
ing from point (@,°, ;) & S*, to return to S,

Let us prove that f (¢,) is Riemann integrable.

If f{@y) isdiscontinuous at point @, = @', the trajectory (.t + @,°, @¢ +
@.’), 0 < t < 2n/ oy passes through points on 7% where x4% = 1. Since there are four
such points, f (g,) can have only a finite number of discontinuity points, It is therefore
sufficient to prove the boundedness of that function,

Let us prove that F (gs, t) is bounded on St x [0, 2/ o], .

For this we consider the behavior of angle ¢ when point M (t) = (0f + @1, @yt -
@s) lies close to points ay, . . ., @4, where x> = 1. Since I,u* = 4I,%, hencethe
Jacobian 8 (11,151

o (@ ywaTsTe)

is nonzero at points g, ..., ¢, & T*®. 1t is, consequently, possible to take in the small
neighborhoods of these points the variables &, and x5 as the local coordinates on T?, and
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the variables x,, %, %3 and x; as single-valued analytic functions of x4 and z,.
Let us consider the differential equations

x, = TgTy — To¥s, Ty = Ty¥s — L3l (2.2)

where %y, Xy, T3 and g are replaced by their expressions in terms of x, and . Since
I, = 0, Eqs. (2.2) do not have singular points close to a; (i = 1, . . ., 4).

‘I'nere exist fairly small neighborhoods U, of points a; in which the oscillation of func-
tion F (g, £) does not exceed 2x when m (§) & U; .

This is so,since when m moves along the trajecto-
ries of Egs, {2.2), F (@, t) coincides with angle ¢
shown in Fig, 1, The trajectory I' which passes through

o point x4 = 25 = 0 divides U; = U into two parts in
m each of which @ varies continuously and has a discon-
[ \ tinuity of m~magnitude when passing through I'. The
z oscillation of g is, however, bounded by the number
2m, since in the small neighborhood U/ the trajecto-
ries of Egs, (2, 2) are very nearly straight,
In addition to U; (i = 14, . . ., 4) function 1 —
zg2 >> & > 0 and, consequently, function @ (¢,
/ ) and the oscillation of function F (g, t) are
bounded, Summarizing the above, we conclude that
Fig, 1 F (@y, t) is bounded in S* X [0, 2n/w,].
During the time ¢t == n2mn/®, angle ¢ becomes

z; I

Tl
Y, f k2nanjor + ) = o,
k=0
Since ®y/ 0y Is irrational, in accordance with Weyl's theorem on uniform distribution
we have [12 o
n
The boundedness of function F (@,, ¢} implies that
lim o (2) — P21 -
t— o0 ¢ @y A
By the same Weyl's theorem the number A depends only on [, and [, The theorem
is proved.
The idea of the proof of this theorem stems from Weyl's investigations of the average
motion of planet perihelions [10].

3, The problem of motion of the line of nodes. The precession angle
is determined by the following formula:

P = Z1%s + s T3Tq

1—zg = 4{l—agd)

If the conditions of Lemma 1 are satisfied, Y = ¥ is an analytic function of uni-
formly varying variables ¢; and @,. In other cases ¥ has a singularity 7 % at points where
22 = 1. If 242 = 1 at t = ¢, then by expanding the indeterminacy of the 1'Hos-
pital mle, for 7, == 0 we obtain
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. — I
Um ¥ (@) =+ 37~ @@O—>%1)

Theorem 2, Let I, % 0 and I,p® = 4l,% If frequencies w, and w, are com-
mensurable, the line of nodes has an average motion. If, however, they are incommen-
surable, the line of nodes has a principal motion which depends only on I, and 7,,

Proof. If the ratio of frequencies ®;/®, is rational, " is a continuous periodic
function of time (at points where xg = =1 it is assumed to equal 3~ [,/21,). Hence
b = At + O (1).

Let us consider the case of the irrational ratio ®;/@, , If I;n* << 41,%,then ¥ (g,
¢g) is continuous on T? , and the proof of the theorem follows from the theorem on
averaging [6]. If,however, I,u% > 4/,%, then,as in the proof of Theorem 1, we in-
troduce the function ;

2n
Font)={Yoitor ot tod, mes, t=[0 o
0
To prove its boundedness we again consider the neighborhoods U; of points a; (i =
1...4). Inregions U,in which z; is close to 1 we have the identity
. . _ xg (1 — Bxg)
P =29 +f f=— (1 F zq)

When m (t) € U,, the integral of f with respect to time (since f is continuous in
U,;) and the integral of 2¢" are bounded, The motion of other regions where z4 is close
to —4 issimilarly analyzed, Outside U; (i = 1 . .. 4) function ¥ is bounded and,
consequently, the oscillation of F is also bounded, Summarizing the above, we conclude
that # (g, t) is bounded on S*{¢, mod 25} X [0, 2n/w,]. To complete the proof it
remains to apply Weyl's theorem on uniform distribution,

Statement 2, If J,u?== 47,2, function W (@1, @2) is Lebesgue integrable on
T* {¢1, 9, mod 2n}.

Proof, If Iu?<C4l? then ¥ is continuous on 72, and the statement is evidently

correct, If I;p® > 4 1,2, function ¥ is continuous everywhere, except at pointsa,. . .,
a4, where zg* = 1. Hence it is sufficient to prove that ¥ is integrable in the smallneigh-
borhoods of points a; (i = 1,. .., 4). Since I,p?== 4 1,2, it is possible to take z, and
zy as the local coordinates in ;. The Jacobian of transformation

9 (@1, Po)

d (x4, x5)

is analytic with respect to z; and z,. By the formula of substitution of variables we have

. 3 (e,
Sg ¥ (91, o) do, dpy = Sg Y (24, %5) a_tfl_;?%)_ dzdzg
Y Y 4y %5

i i
We use the equality 23y
\il' e e ————
- 4 (24 + z5?)
Functions z; and z, are analytic in U; with respect to z, and z; , and 3 = 0 when
z; = 25 = 0. Hence the integrand expressed in terms of z4 and z, is of the form
F = f (x4, z5) [z + x4?)

where ; is an analytic function in U, and f (0, 0) = 0. In polar coordinates (r, ):
Ty=Trcos P, zz = rsing
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SS Fdzday —= SS L drd
Ui : U ! ¥
Since f/r 1is continuous and bounded in the deleted neighborhood of points «;, hence
F is Lebesgue integrable in region U, (i = 1,.. ., 4). The theorem is proved.
Theorem 3. Forsmall W®

2m 2%
VS ¥ (01, @) dpnds = 0
0 0
To prove this theorem we need the following lemma,
Lemma 3, Let the contraction of function f (z; . . . ¥s) onto the invariant torus
T? be Lebesgue integrable, Then
2n 2%
f
& g f (91, o) drdes = gf)—V; do
0 0 T
where V), is the four-dimensional volume of the parallelepiped constructed on vectors
grad I; (i = 1, ..., 4) as its sides, and do is area element on T as a surface in
R® {z; .. - s}

Proof. Insome neighborhood of the invariant torus 72 {g,, ¢, mod 2n} in RS itis
possible to make the invertible substitution of variables
T =T (117-~'7 147 G 1, qz) (L = 11---7 F’)
When I, = 0 the equations of motion in new variables (I, ¢) are of the form
I'=0,9;=0; (I;.. . L); i=1,..., 4j=1,2

These equations have an integral invariant of density
A (xyy..., g)
8(111" * 14’ Py (Pz)

p=M
where M is the density of the integral invariant in terms of variables #p.. ..,z Since
M =1 and p = 1,when /; = U, hence in this case

a(xl,...,$a)
6(11,...,14, (Pn (P‘z

y =1

Let us consider vectors

o0z, Oxg .
g, = T,...,T) (i=1,...,4)
3 1
oz, Oxg .
Obviously
(gl'ad Iiy E]) = 6” (ia j= 17- EERR) 4)
(grad I;, np) =0 (i—=1,..., 4 k=1,2)

where §;; is the Kronecker delta, We represent vectors g; in the form £,” - £,°, where
g’ is orthogonal to %; and 7, and ;" can be expanded in terms of W; and v,. Then

3 (2. ..7) .
Ve (Er+o- EgMe) = 5(11.(f‘,4’;f, oo | = Ve G Van)) =1 (3.1
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where V, (a;. .. a,) denotes the »~dimensional volume of the parallelepiped construc-
ted on vectors ay,. .., @, asitssides, Since again

(grad 1;, E;") = 8;;
hence

V‘ (grad Il) V‘ (a]') = 1
Taking into account (3, 1), we obtain
Ve (grad I;) = V, (n;)

and, since by definition of the area element do = V, (n,, n;) do,dyp, , hence

2m 2% ;1

V2 (1, M) /
S S fdo,dee = g % Vi(gradl,) 203 = iﬁdc
o o 0 0

The iemma is proved,

Proof of Theorem 3, Let usconsider the transformation st : R® — RS® defined
by the formula y = m (z), where z = (2, . . . Zg) and § = (—; — ZyZaTy Ty —
Zs). The mapping of 1, a linear orthogonal transformation, is the product of three mir-
ror images relative to the coordinate hyperplanes. When [ is small, each of the two in-
variant tori, which constitute the common level of integrals, transforms into itself (see
the proof of Lemma 1),

Since 7t : 7% — T2 retains its area, the Jacobian of that transformation is equalunity

and, consequently, -
(m (%)) . ¥ (z)
i V4 (JT. (z)) dU - hg V4 (’E) (ZG (3. 2)

By Gramme's formula
Va(grad I}) = / det (grad /;, grad I;) (i, j, k=1,..., 4)
with the use of this formula it is possible to prove that V, (n (2)) = V, (). Since

¥ (n (z)) = —¥ (%), formula (3, 2) yields the equality
2% 27 -
V| ¥ (0 0 douds = § - do 0
0 0 2

The theorem is proved,
Corollary. If p is small and the ratio of frequencies ®,/®, irrational, the prin-
cipal motion of the line of nodes is zero, since by the theorem on uniform distribution

[6’ 12] 1 2% 2%
g S S W (91, Pa) dpydpe = 0

00

The author thanks V, V, Rumiantsev and Iu, A, Arkhangel'skii for their interest in this
work,
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