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Qualitative properties of typical rotations of a heavy solid body are analized in 
the case of the Goriachev-Chaplygin problem in which the first integrals ofequa- 
tions of motion are independent.Gyration numbers of tangent vector fields on 
two-dimensional invariant tori are determined, It is shown that the nutation of 

a solid body is a quasi-periodic motion, and spin and precession have a pcinci- 

pal motion, If the gyration number is irrational, then in the case of a solid body 
the principal motion of node lines is zero. 

In the case of the Goriachev-Chaplygin problem of motion of a heavy solid body with 
a fixed point the principal moments of inertia satisfy the relation A = B = 4C and the 
center of mass lies in the equatorial plane of the ellipsoid of inertia. Initial conditions 
are selected so that the constant of the area integral is zero. There exists then a pacti- 

cular supplementary integral, and this makes it possible to reduce the integration of the 
equations of motion to quadratures El]. 

A qualitative investigation of the motion of the Gociachev-~haplygin top was initiated 
by Sretenskii [2] who introduced in the equations of motion a small parameter related to 
the fast gyrations of the body, and outlined the pattern of motion in the first appcoxima- 

tion with respect to that parameter. These investigations were continued in [3], An ana- 

lysis of the special variables introduced by Chaplygin for integrating the equations of 
motion is presented in [4]. The qualitative pattern of body gyration in some degenerate 

cases is investigated in [5]. 
Certain mathematical problems related to the analysis of the motion of a body in the 

Goriachev-Chaplygin problem are considered below without any simplifying assumptions. 

1, Dynrmfc #y:trmr originating on lnvarfant torf of the Gorfa- 
chev-Chapfygfn problem. For the symmetry of formulas we denote everywhere 

the Euler-Poisson variables p, 4, r, yit Ys and ys by XI:,, a&:,, . . *, x6 , respectively, 
In the Goriachev-Chaplygin problem the Euler-Poisson equations have four independent 

integrals 

1, = 4 (5r2 + %“) -t 5se - 2PX&, 1, = 5s (5i2 + %2) + ~;“l”S 
(1.1) 

I3 = 4 (X$4 + X&J + 53&J (13 = O), I& f 542 + X6” +xg 

(I‘ = 1) 

in which p+ = PriC, P is the body weight, r is the distance between the center of 
mass and the suspension point, and C is the moment of inertia about the dynamic sym- 

metry axis. 
We denote by E (II, 1s) the common levels of the four integrals (1.1) in the six- 

dimensional space of the Euler-Poisson equations. Below we concider only such constants 
of integrals I’c and I, for which functions (1.1) ace independent at E (I,, 1,). Thecase 
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in which 1, = 0 is a specifically excluded. The remaining constants constitute a null 

set. If the integrals (1.1) are independent, E is a smooth two-dimensional manifold. 
A classical dynamic system obviously arises at E [G]. Such systems can be investigated 
by the method described in [7]. 

Each connected component of E is a two-dimensional torus [‘7]. The question arises 

of the number of connected components of E. A partial answer is provided by the fol- 

lowing lemma, 
Lemma 1. If p is small, E is a union of two tori. 
Proof. First,we assume P - 0. Then the common levels of functions I, and IO 

represent in the three-dimensional space R3 {qx2z9) two circles Sir (i --= 1, 2) that lie 
in different planes 23 - const. To each point ( ~~~zs~zs~} on Sir (i 7 1,2) corresponds 
a circle cut out in the Poisson sphere {zd2 -t ~~2 $- ~~2 -= 1) by the area integral 

4 (z1%g + 2sOzs) + zs”zs = 0 

Since the position of that circle contbuously depends on point {zlOzZo~.ao~, the manifold 
B consists of two connected components when P = 0 . If P # 0 but is small, then, by 

the Morse theorem the common levels are diffeomorphic to the level at P = 0 and,con- 
sequently, have as many connectedness components 183. 

N o te * If we increase P , then, by the same Morse theorem, the number of connected 

components can change only then, when integrals (1.1) become interde~ndent, 

On each two-dimensional invariant torus T2 we can select angle variables ‘pr and 
r+~s mod 23t in which the equations of motion are of the form 

($1’ = @1r 'p2' = 0-2 (1.2) 

where ‘I)~ (i = 1, 2) are constants Independent on 1, and I,. Equations (1.2) specify 
on Ts a conditiona~y periodic motion at two frequencies wr and 0s. To determine these 

we introduce the variables s, and sa by formulas 

53 = Sl + -72, 4 (Xl2 + x27 = -sp% 

Note that variables sr and -s, were introduced by Chaplygin for integrating the equa- 

tionr of motion cl]. The Euler-Poisson variables can be expressed in terms of sr and s, 
with the use of integrals (1.1). In the new variables the equations of motion assume the 

form (cf. G]) 
. 

Sl = 
)/Q(Q) l ‘t/@@P) 

2(s,-ss) ’ s2 = 2(s,--2) 
(1.3) 

(a, (2) = 4p222 - (23 - I,2 - U,)2) 

Equations (1.3) are of the same form as in the Kowalewska problem [7]. Hence the re- 
sults obtained there are valid for these equations. The variables s, and S, vary in the 

intervals [sib,] and [a,bs], where the polynomial @ (z) > 0. If I2 # 0, the inter- 
section [%b,] n \a,b,] is empty. In the opposite case variables s, and ss may be the 

same, and since slsI & 0, $1 = ss = 0 on T2 for certain initial data. Consequently. 

X1 = x2 = 5s =-= 0 and 1, -= 0. A detailed qualitative analysis of the behavior of 

variables s, and ~2 is given in [4, 71. 
The numbers ai and hi (i = 1, 2) are simple roots of polynomial @ (z), since other- 

wise asymptotic motions would exist on the related invariant torus, which is impossible 
because of the assumption of the independence of integrals (1.1). 
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We introduce angle variables \I1 and Qs mod &-c by formulas 

In new variables Eqs. (1.3) assume the form 

where Si (z) are real hyperelliptic functions of period 2n which are determined by 

(1.4). The inverse substitution (I&, $,) -+ (cpi, cps) reduces Eqs. (1. 5) to the form 

c71 
(LQ 

These equations determine the conditionally periodic motion on T’ ((01, ~2 mod an>. 

The ratio of frequencies (the gyration number) is y = ‘~r/~s which evidently depends 
on I, and 1, , That function is not constant at least foi small values of parameter CL. 

2. The aigenrotatfon problem, Let us investigate the motion of the body 
in terms of Euler angles 6, <p and 9. Obviously xl, x7, . . ., x6 are conditionally 
periodic functions of time. Since cos 6 = zg and 0 & 6 & n, function 8 ( t) is also 
conditionally periodic. 

Lemma 2, If at the initial instant of time lipz ( 41,‘, there exists an E > 0 
such that for all k 

I J-6 0) I < 1 - E (2.1) 

Proof. If 1 r6(=l,then sa=rrQ= r5 = 0, Integrals (1.1) yield the equalities xl2 $- xz2 -- 

II / 4 and I xl I --_ 1 1, i p 1 (p + 0). Hence z2 2 = I1 /4 -f22/~L2. Consequently, if at some 
instant of time the equality I x6 1 :-:- 1 is satisfied at E , then Z,p2 > 4 Iz2. Since set-s is 
compact,inequality (2.1) is valid under conditions of the lemma for some E > 0 . 

Note. If I$2 > 4 &2, the dynamic symmetry axis is vertical for some initial data 

that satisfy this inequality, 
We shall use the following terminology of celestial mechanics [9, lo]. The mean 

motion of quantity g (t) is h = const, if for all t 

5 (t) r: At + 0 (1) 

If E (t) = ht -i- o(t) when t -+ 00, i.e. 

lim 5 tt)- hi? = 0 

t-+00 f 

the principal motion of the quantity E (t) is h . 
Statement 1. If conditions of Lemma 2 are satisfied, the spin has an average motion. 

Proof. Since 1 - ze2 > E > 0 for all t, hence 

is a two-frequency conditionally periodic function of time. By the Bohl theorem about 
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the argument [ll] 

where m, and R are integers and f is a conditionally periodic function of t. Hence cp= 

hr i- 0 (2). 
If at some instant of time t = t’ the equality zs% = 1 is satisfied, then angle cp is 

not formally determined.’ In such case we proceed as follows. We know that 

Using the l’Hospital_ for expanding the indeterminate form for 1, # 0, we obtain 

lim cp’ = -+, 
LA 1 

lili,q(t) = lim q(t) = cp’ 
f-4+0, 

It is reasonable to assume on the basis of the last equality that ‘p (t’) = cp’. Function 
cp it) is then determinate and continuous for all t E (--co, 00). 

This reasoning shows the expediency of analyzing spin even then, when the axis ofsym- 
metry can assume a vertical position. 

Theorem 1. Let 1, # 0 and 1,~’ # 4122. If for given constants of integrals 
I, and 1% frequencies wr and os are commensurable, the spin has an average motion. 

If 01 and 0s are incommensurable~ the spin has a principal motion that depends only on 
1, and I,. 

Proof. Statement 1 implies that it is sufficient to consider the case when 1,~’ > 
41s’. If the ratio or/o2 is rational, then 4”’ is a continuous periodic function of time 
(at points where x6 2 = 1 function q’ is assumed to be equal 1,/21,). Hence in that 

case cp = ht + 0 (1). ’ 
Let us assume now that the ratio o,/ctts is irrational and consider on T2 {cpi, 

cps mod 2~) the circle S = ((rpi, cps) E T2 : ‘pl = cpc}. On S’ the variable 
(ps mod 2n is an angle variable. Let us determine on the direct product s1 X [O, 

23-c/o,] the function l 

F&h q = \d,(w+ (PlO* Wz~-l-(p2) dr, (PaES', + $1 

0 

where cp’ = @ (~1, ~2). It is clear that f (cp2) = $’ (cps, 2n/o,) defines the varia- 
tion of angle 9 during the time taken by a point on T2 moving along an irrational wind- 
ing from point ((pi’, cp2) e S1, to return to S. 

Let us prove that f (qs) is Riemann integrable. 

If f (c&) is discontinuous at point ‘p2 = qs‘. the trajectory (w,t + qr’, o,t + 

vat), 0 & t & 2nior passes through points on T2 where xsz = 1. Since there are four 

such points, f (c& can have only a finite number of discontinuity points, It is therefore 

sufficient to prove the boundedness of that function. 
Let us prove that F (cps, t) is bounded on 8’ x IO, 21%/6&l. 
For this we consider the behavior of angle v when point m(t) = (art + %“T w2t f 

cp2) lies close to points al, . . ., ~4, where xs2 = 1. Since lrp” # 41s2, hence the 

Jacobian a (fJ,f,fd 
a1(~1"2%"6) 

is nonzero at points al, . . ., a& E T2. It is, consequently, possible to take in the small 

neighborhoods of these points the variables ~4 and xr, as the local coordinates on T2, and 
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the variables xi, xs, xs and zi as single-valued analytic functions of tk and x5. 
bet us consider the differential equations 

54 * = x3x5 - xgl& 55‘ = .T:,q - X3X& (2.2) 

where Xi, Xs, 5s and x6 are replaced by their expressions in terms of x4 and x6. Since 
I, # 0, Eqs. (2.2) do not have singular points close to ai (i = 1, . . . , 4). 

‘i’here exist fairly small neighborh~ds Ui of p,oints Ui in which the ~~illationof~nc- 
tion F (rpz, t) does not exceed 2n when m (t) E Ui l 

This is so,since when m moves along the trajecto- 

ries of Eqs. (2.2), F (cps, t) coincides with angle cp 
shown in Fig. 1. The trajectory r which passes through 
point .z4 = xr, = 0 divides Vi = U into two parts in 
each of which q varies continuously and has a discon- 
tinuity of sE-magnitude when passing through I’. The 
oscillation of rp is, however, bounded by the number 

2n, since in the small neighborhood U the trajecto- 

ries of Eqs. (2.2) are very nearly straight, 
In addition to ui (i = 1, . . ., 4) function 1 - 

xas > E > 0 and, consequently, function 4, (cpl, 
qsf and the oscillation of function F fvs, t) are 

bounded. Summarizing the above, we conclude that 

Fig. 1 F (cpz, t) is bounded in S1 x IO, 2at/o,l. 
During the time t = n&do1 angle 47 becomes 

n-1 

c 
f (k23@-%/% + (9%) = (J, 

k=O 

Since w,/w, is irrational, in accordance with Weyl’s theorem on uniform distribution 

we have [12] 
lim (Jn = h 
**Eo n 

The boundedness of function F ((ps, t) implies that 

lim Cp ($) 12i7A R -=:-=: 
t-+m t 01 

By the same Weyl’s theorem the number A depends only on Ir and 1,. The theorem 

is proved. 
The idea of the proof of this theorem stems from Weyl’s investigations of the average 

motion of planet perihelions [lo]. 

3. The problem of motion of the line of nodsr. The precession angle 
is determined by the following formula: 

If the conditions of Lemma 1 are satisfied, 9’ = Y is an analytic function of uni- 

formly varying variables ‘pr and cps_ In other cases Y has a singularity Ts at points where 
262 = 1. If ZR2 = 1 at t = t’ , then by expanding the indeterminacy of the l’Hos- 

pita1 rule,for I, # 0 we obtain 
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Theorem 2. Let I1 # 0 and I,p2 =#= 41z2. If frequencies or and 0s are com- 
mensurable, the line of nodes has an average motion. If, however, they are incommen- 
surable, the line of nodes has a principal motion which depends only on Ii and I,. 

Proof. If the ratio of frequencies wr/os is rational, $’ is a continuous periodic 
function of time (at points where z s = _tl it is assumed to equal F 1&V,). Hence 
7c) = ht + 0 (1). 

Let us consider the case of the irrational ratio @r/o2 . If 1rp2 < 41,2,thenY(cp,, 
~2) is continuous on T2 , and the proof of the theorem follows from the theorem on 

averaging [S] . If, however, 1rpa > 41z2, then, as in the proof of Theorem 1, we in- 
troduce the function t 

qcp2, t> =p%%t+cp lo, o2t + cp2) & ‘p2 E 8’9 E[O, -y 

0 

To prove its boundedness we again consider the neighborhoods ui of points Ui (i = 

1 . . . 4). In regions Ui in which 5s is close to 1 we have the identity 

When m (t) E Ui, the integral of f with respect to time (since f is continuous in 

u,) and the integral of &.p’ are bounded. The motion of other regions where z,, isclose 
to -_1 is similarly analyzed. Outside Ui (i = 1 . . . 4) function \y is bounded and, 

consequently, the oscillation of F is also bounded. Summarizing the above, we conclude 
that F (cp2, t) is bounded on S {Q mod 2a-c) X [0, 2n/q]. To complete the proof it 
remains to apply Weyl’s theorem on uniform distribution, 

Statement 2. If I,p2# 41,2, function Y (cpl, (~2) is Lebesgue integrable on 

T2 {cpr, ‘p2 mod 2n). 
Proof. If I+’ < 41z2, then Y is continuous on T2 , and the statement is evidently 

correct. If I,u2 > 4 Iz2, function Y is continuous everywhere, except at points a,,. . . , 
% where xgz = 1. Hence it is sufficient to prove that Y is integrable in the smallneigh- 

borhoods of points ai (i = i ,. . . , 4). Since I,p2 # 4 Za2, it is possible to take x4 and 
zr, as the local coordinates in U, . The Jacobian of transformation 

a (cpl, cp2) 
acx4r 25) 

is analytic with respect to xi and z5. By the formula of substitution of variables we have 

ss y(cP,, ‘Pz)dq’,Qa= 
a (rpll cp2) 

CTi 
si 
ui 

‘J’ (249 25) a cx4, x5) d*&s 

y=-- 
x3*0 

4 (x42+ x59 

We use the equality 

Functions x3 and x6 are analytic in vi with respect to z4 and x5 , and x3 = 0 when 
x4 = x5 = 0. Hence the integrand expressed in terms of 54 and z5 is of the form 

F = f (x4, x5) / (~4' + xa2) 

where f is an analytic function in Vi, and f (0, 0) = 0. In polar coordinates (r, Q): 
X4 = r Cos cp, x5 = r sin rp 
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Since f / r is continuous and bounded in the deleted neighborhood of 

F is Lebesgue integrable region ui (i 1,. ,, The theorem proved. 

Theorem For small 

To prove theorem we the following 

Lemma 3. the contraction function f . . onto the torus 
T2 Lebesgue integrable. 

2X2% 

1 \ f(cpl, (P2)&Jl~~I = $+J 

0 0 T, 

where v, is the four-dimensional volume of the parallelepiped constructed on vectors 

grad Ii (i = 1, . . ., 4) as its sides, and da is area element on T2 as a surface in 

R6 {X1 . . . 56). 
Proof. In some neighborhood of the invariant torus T2 {cpI, ‘pz mod 2n) in Re it is 

possible to make the invertible substitution of variables 

pi _’ pi (Z,,. f .( II, ~~~ q2) (i = 1,. 6) . ., 

When I, = 0 the equations of motion in new variables (Z, cp) are of the form 

Ii’ = 0, !+7j’ = @j (I,. . . 14); i = 1,. . ., 4; i = 1, 2 

These equations have an integral invariant of density 

a (x I,“., X6) 
p=M a(Z,,..., Z,,%,Q) 

where M is the density of the integral invariant in terms of variables J+,. . ., x6. Since 
M - 1 and p = 1, when I, = 0, hence in this case 

8(x %I) 1,“‘9 
8(Z I,“‘, Z,, 'pl? cp2) =' 

Let us consider vectors 

Ei = (2, **a, -$) (i=l,..., 4) 

(i = I? 2) 

Obviously 

(grad Ii, Sj) = 8ij (i, j z 1,. . ., 4) 

(grad Ii, nk) = 0 (i : 1,. . ., 4; k = 1, 2) 

where bij. is the Kronecker delta. We represent vectors & in the form &’ + &‘, where 
E;~’ is orthogonal to vi and Q, and ci” can be expanded in terms of ql and Q. Then 

V,(El.'. t491%)= 

a(x,...Zg) 

a (Z,...Z,, qI,q2) = v4 (tIjv2(qj) =I (3.1) 
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where V, (aI. . . a,) denotes the n -dimensional volume of the parallelepiped construc- 
ted on vectors a,,. . . , a, as its sides. Since again 

(grad Ii, cj’) = afj 
hence 

V, (grad Ii) V, (Ej’) = 1 

Taking into account (3.1). we obtain 

V4 @ad Ii) = V, (rli) 

and,since by definition of the area element do = V, (ql, qz) dcp,dv, , hence 

The lemma is proved. 

Proof of Theorem 3. Let us consider the‘ transformation z : R6 --t R6 defined 

by the formula y = 3t (x), where 5 = (x1 . . . x6) and y = (-x1 - zsaz,zpr, - 

~0). The mapping of n, a linear orthogonal transformation, is the product of three mir- 
ror images relative to the coordinate hyperplanes. When p is small, each of the two in - 

variant tori, which constitute the common level of integrals, transforms into itself (see 

the proof of Lemma 1). 
Since x : T2 --t T2 retains its area, the Jacobian of that transformation is equalunity 

and, consequently, 

(3.2) 

By Gramme’s formula 

vd (grad Ik) = fdet (grad Ii, grad Ii) (t, f, k = 1, . . ., 4) 

With the use of this formula it is possible t.o prove that V,, (n (3)) = vb (2). Since 

Y (n (2)) = -Y (4 f , ormula (3.2) yields the equality 

2n 2x 

ss 
y (%9 rp2> @d-#2 = Gdo=O 

0 0 

The theorem is proved. 

Corollary. If p is small and the ratio of frequencies 01/02 irrational, the prin- 

cipal motion of the line of nodes is zero, since by the theorem on uniform distribution 

[S, 121 2x 2s 

lip _!U.L = 

t-co t 

A=& 

ss 
y (~~19 ~2) dwh2 = 0 

0 0 

The author thanks V. V, Rumiantsev and Iu, A. Arkhangel’skii for their interest in this 
work. 
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